On a local uniqueness result for the inverse Sturm-Liouville problem
نویسنده
چکیده
A new and fairly elementary proof is given of the result by B. Simon [Sim99], that the potential in a Sturm-Liouville operator is determined by the asymptotics of the associated m-function near −∞. The proof given is based on relations between the classical transformation operators and the m-function.
منابع مشابه
On inverse problem for singular Sturm-Liouville operator with discontinuity conditions
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
متن کاملSolving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals
In the present paper, some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated. Uniqueness theorems for the solution of the inverse problem are proved, then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کامل